When estimating channel parameters in linearly modulated communication systems, the iterative expectation-maximization (EM) algorithm can be used to exploit the signal energy associated with the unknown data symbols. It turns out that the channel estimation requires at each EM iteration the a posteriori probabilities (APPs) of these data symbols, resulting in a high computational complexity when channel coding is present. In this paper, we present a new approximation of the APPs of trellis-coded symbols, which is less complex and requires less memory than alternatives from literature. By means of computer simulations, we show that the Viterbi decoder that uses the EM channel estimate resulting from this APP approximation experiences a negligible degradation in frame error rate (FER) performance, as compared to using the exact APPs in the channel estimation process.