A low resolution multi-camera system for person tracking

Abstract

The current multi-camera systems have not studied the problem of person tracking under low resolution constraints. In this paper, we propose a low resolution sensor network for person tracking. The network is composed of cameras with a resolution of 30x30 pixels. The multi-camera system is used to evaluate probability occupancy mapping and maximum likelihood trackers against ground truth collected by ultra-wideband (UWB) testbed. Performance evaluation is performed on two video sequences of 30 minutes. The experimental results show that maximum likelihood estimation based tracker outperforms the state-of-the-art on low resolution cameras

Publication
IEEE International Conference on Image Processing ICIP